From PVC (UI)

This guide explains how to add a model that’s already been pre-loaded on a Persistent Volume Claim (PVC) within your Kubernetes namespace for MLIS.

Before You Start


PVC Syntax & URL Options

Review the following PVC syntax and URL options to ensure you have the correct information for adding your model.

OptionDescriptionExampleDefault
PVC NameName of the Persistent Volume Claim (PVC) to be mountedpvc://my-model-pvcRequired, no default
PathOptional path within the PVC to be mountedpvc://my-model-pvc/modelsIf not specified, the entire PVC is mounted
ContainerPathDirectory in container where the PVC is mountedpvc://my-model-pvc?containerPath=/mnt/models/mnt/models
readOnlyWhether the volume is read-onlypvc://my-model-pvc?readOnlyIf not specified, the volume is read-write

warning icon PVC Name
The PVC must exist in the Kubernetes namespace where the packaged model will be deployed.

Adding the Model

  1. Sign in to HPE Machine Learning Inferencing Software and navigate to Packaged Models.

  2. Select Add new model and fill in the basic details.

  3. In Storage Details:

    • Set Registry to None and Model Format to Custom.
    • Enter the appropriate Image name.
    • Specify the URL/Path using PVC syntax (e.g., pvc://models-cache-pvc?containerPath=/mnt/models).
  4. Choose a Resource Template or define custom resources.

    NameDescriptionRequest CPURequest MemoryRequest GPULimit CPULimit MemoryLimit GPU
    cpu-tiny1 cpu, 10Gi memory, no gpu per replica110Gi110Gi
    cpu-small4 cpu, 20Gi memory, no gpu per replica420Gi640Gi
    cpu-large8 cpu, 40Gi memory, no gpu per replica840Gi1060Gi
    gpu-tiny1 cpu, 10Gi, 1 gpu per replica110Gi1110Gi1
    gpu-small2 cpu, 20Gi, 2 gpu per replica220Gi2640Gi2
    gpu-large8 cpu, 40Gi, 4 gpu per replica840Gi41060Gi4

    note icon GPU Type
  5. Set any necessary Environment Variables and Arguments based on your packaged model’s framework type. For more information, see the Advanced Configuration reference article.

  6. Select Create model.